Polynomial Long Division: (3a^(5)-2a^(4)+a^(3)-2) by (a^(2)+a+1)
Polynomial long division is a method used to divide polynomials, similar to long division with numbers. Here's how to divide (3a^(5)-2a^(4)+a^(3)-2) by (a^(2)+a+1):
Steps:
-
Set up the division:
____________ a^2+a+1 | 3a^5 - 2a^4 + a^3 - 2
-
Divide the leading terms:
- The leading term of the divisor (a^(2)) goes into the leading term of the dividend (3a^(5)) 3a^(3) times.
- Write 3a^(3) above the dividend.
3a^3 _______ a^2+a+1 | 3a^5 - 2a^4 + a^3 - 2
-
Multiply the divisor by the quotient term:
- Multiply (a^(2)+a+1) by 3a^(3) to get 3a^(5) + 3a^(4) + 3a^(3).
3a^3 _______ a^2+a+1 | 3a^5 - 2a^4 + a^3 - 2 3a^5 + 3a^4 + 3a^3
-
Subtract:
- Subtract the result from the dividend. Remember to change the signs of the terms being subtracted.
3a^3 _______ a^2+a+1 | 3a^5 - 2a^4 + a^3 - 2 3a^5 + 3a^4 + 3a^3 ----------------- -5a^4 - 2a^3
-
Bring down the next term:
- Bring down the next term of the dividend (-2).
3a^3 _______ a^2+a+1 | 3a^5 - 2a^4 + a^3 - 2 3a^5 + 3a^4 + 3a^3 ----------------- -5a^4 - 2a^3 - 2
-
Repeat steps 2-5:
- The leading term of the divisor (a^(2)) goes into the leading term of the new dividend (-5a^(4)) -5a^(2) times.
- Multiply the divisor (a^(2)+a+1) by -5a^(2) and subtract the result.
- Bring down the next term (-2).
3a^3 - 5a^2 ______ a^2+a+1 | 3a^5 - 2a^4 + a^3 - 2 3a^5 + 3a^4 + 3a^3 ----------------- -5a^4 - 2a^3 - 2 -5a^4 - 5a^3 - 5a^2 -------------------- 3a^3 + 5a^2 - 2
-
Repeat steps 2-5 again:
- The leading term of the divisor (a^(2)) goes into the leading term of the new dividend (3a^(3)) 3a times.
- Multiply the divisor (a^(2)+a+1) by 3a and subtract the result.
3a^3 - 5a^2 + 3a _______ a^2+a+1 | 3a^5 - 2a^4 + a^3 - 2 3a^5 + 3a^4 + 3a^3 ----------------- -5a^4 - 2a^3 - 2 -5a^4 - 5a^3 - 5a^2 -------------------- 3a^3 + 5a^2 - 2 3a^3 + 3a^2 + 3a ------------------ 2a^2 - 3a - 2
-
Repeat steps 2-5 one last time:
- The leading term of the divisor (a^(2)) goes into the leading term of the new dividend (2a^(2)) 2 times.
- Multiply the divisor (a^(2)+a+1) by 2 and subtract the result.
3a^3 - 5a^2 + 3a + 2 _______ a^2+a+1 | 3a^5 - 2a^4 + a^3 - 2 3a^5 + 3a^4 + 3a^3 ----------------- -5a^4 - 2a^3 - 2 -5a^4 - 5a^3 - 5a^2 -------------------- 3a^3 + 5a^2 - 2 3a^3 + 3a^2 + 3a ------------------ 2a^2 - 3a - 2 2a^2 + 2a + 2 ------------ -5a - 4
-
The remainder:
- The final result is -5a-4. This is the remainder, and it has a degree less than the divisor.
Therefore, the result of dividing (3a^(5)-2a^(4)+a^(3)-2) by (a^(2)+a+1) is:
3a^(3) - 5a^(2) + 3a + 2 with a remainder of -5a-4
This can be written as:
3a^(3) - 5a^(2) + 3a + 2 + (-5a-4)/(a^(2)+a+1)